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SYNOPSIS 

On the basis of known nonlinearity of intermolecular force fields, we discuss the interpre- 
tation of PVT (pressure, volume, and temperature) behavior, pressure-temperature su- 
perposition for polymers, and the relationship between yield stress and tensile modulus. 
For PVT behavior of polymers, our theoretical results coincide with the experimental data, 
and their response to pressure is universal. The maximum theoretical yield strain, cy, for 
glassy polymers is 1.08, and this value is beyond the elastic limit for glassy polymers. The 
previously established empirical relationship between yield stress, cry, and tensile modulus, 
E: a, = 0.028 E ,  which again, is universal for glassy polymers, is predicted also by our 
phenomenological model. The theoretically predicted values of yield stress for glassy poly- 
mers range from 24 MPa to 84 MPa, coinciding with published experimental results. We 
discuss how the phenomenological model is helpful in the understanding of nonlinear vis- 
coelasticity of glassy polymers 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The nonlinear viscoelastic behavior of glassy poly- 
mers is an important topic in materials science. It 
is difficult to obtain satisfactory quantitative pre- 
dictions of values of yield stress. However, a uni- 
versal empirical relationship between yield stress 
and tensile modulus has been found for glassy poly- 
m e r ~ . ~ - ~  Recently, Striuk3 has discussed the rela- 
tionship between yield stress and tensile modulus 
for amorphous glassy polymers, introducing a new 
idea connected with the nonlinear intermolecular 
force field. It turns out that the small-strain moduli 
and the yield stress can be predicted, while a qual- 
itative explanation was obtained for some hitherto 
unexplained experimental facts. The implication is 
that behavior close to yield basically differs from 
that at small strains. Thus, flow at the yield point 
is not simply an acceleration of small-strain creep.3 
Indeed, a new idea is needed to understand the be- 
havior of compression and yielding of glassy poly- 
mers. 

In this article, we first use the known nonlinearity 
of the intermolecular force to derive a reasonable 
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phenomenological model. This allows us to discuss 
the equation of state for polymers. We then discuss 
the response of polymers to pressure and the yielding 
behavior of glassy polymers. 

BACKGROUND THEORY 

The intermolecular forces between two individual 
particles is modeled by a Mie potential f ~ n c t i o n : ~  

where U ( r )  is the interaction energy, r is the dis- 
tance between the centers of gravity, and U,, r,, a, 
and @ are constants. This form of interaction energy 
diagram is shown in Figure 1. The r, constant is 
the distance at  which the energy is a t  a minimum. 
This equation can also be written in the following 
form: 

U ( V )  = -A/V'" + R / V n ,  ( 2 )  

where A, R, n, and m are constants, V is the molar 
volume, and m and n are the exponents for the at- 
traction and repulsion terms, respectively. 
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P = -mA/Vm+' + nR/V"+' ( 6 )  

B = -V(SP/SV) ,  

= -m(m+l )A /V"+ '+n(n+ 1)R/Vn+l ( 7 )  

(SB/SP)T = n + m + 2 

- ( n  + l ) ( m  + l ) P / B ,  (8) 

-", P 
r 

Figure 1 
distance, r,  between the molecules. 

Interaction energy, V(r) ,  as a function of the 

We next assume the following: ( 1 )  no phase 
transition occurs during compression; ( 2 ) the 
compression of the volume under external pressure 
is due to the change in molecular chain segment 
separation; and ( 3 )  the internal pressure, Pi, de- 
termined by the change of the internal energy re- 
sulting from the thermal motions of the chain seg- 
ments, is equal to the external pressure: 

P =  Pi .  ( 3 )  

Here, Pi is the sum of two terms; the pressure 
due to internal energy and the thermal pressure: 

The first term is the pressure along the absolute 
zero temperature isotherm and is governed by the 
internal energy, and the second term is the addi- 
tional pressure generated by thermal motions. At  
constant temperature, Pi depends on the value of 
( d  U / d  V ) ,  . Therefore, it may be considered that Pi 
is determined approximately by the change in the 
internal energy resulting from the change in volume. 
The effect of thermal motions of the chain segments 
on Pi is considered to be the change in the internal 
energy and the volume at zero pressure with tem- 
perature: 

Combining eqs. ( 2 ) and ( 5 ) ,  the following three 
equations are obtained 

where B is the bulk modulus. 
From eqs. ( 6 )  - ( 8 ) ,  the precise solutions for the 

relationship between bulk modulus, pressure, and 
volume can be ~ b t a i n e d . ~  

The parameters n and m are constants5 for all 
polymers (including the glassy, crystalline, and liq- 
uid states). The values of n and m are 6.14 and 1.16, 
re~pectively.~ B ( T,O) and V (  T,O) must be estimated 
by fitting eq. ( 1 0 )  to experimental data. Thus, eq. 
( l o ) ,  which describes the P V T  relationships in 
polymers, is not a predictive relationshipon its own. 
However, we may derive useful conclusions regard- 
ing the pressure and temperature superposition of 
compressed polymers and the relationship between 
yield stress and tensile modulus for glassy polymers, 
as is shown in the following section. 

RESULTS AND DISCUSSION 

PVT Behavior of Polymers 

Figures 2, 3, and 4 are the comparison of calcu- 
lated results using eq. ( 1 0 )  with experimental 
data6 for poly (methyl methacrylate) (PMMA) , 
poly (hexamethyl methacrylate) (PHMA) , and 
branched polyethylene (BPE) ,  respectively. In 
comparing the theoretical results with experi- 
mental data, the parameters B (T,O) and V (  T,O) 
were obtained by fitting eq. (10)  to the experi- 
mental data. The quantitative comparison be- 
tween theoretical results and experimental data 
was made for each polymer. The results given in 
Figures 2, 3, and 4 show that eq. ( 1 0 )  accurately 
describes the isothermal compression behavior of 
polymers in the glassy state and also in the crys- 
talline state. The average error in the absolute 
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Figure 2 
theoretical results. 

PVT behavior of PMMA. The solid line is the 

values of the specific volume between experimental 
and theoretically calculated values is about 
+0.0002 cm3g-l, which is within experimental er- 
ror. The error is slightly larger a t  high tempera- 
tures than that in low temperatures. A t  high tem- 
perature, the thermal pressure determined by the 
thermal motions makes a larger contribution to 
Pi. Therefore, when eq. ( 4 )  was reduced to eq. 
( 5 ) ,  this introduced a larger error a t  high temper- 
ature. 

Recently, Arends' applied the Lennard-Jones 
potential function, which is the same as eq. ( 1 ) , to 
amorphous polymers. He modeled successfully the 
P V T  behavior of glassy polymers. He found when 
the polymer was in the glassy state, the parameters 
shown in Lennard-Jones potential function corre- 
spond to the volume and internal energy of the 
polymer at absolute zero of temperature. The results 
implied that the assumptions in obtaining eqs. ( 9 )  
and (10) are correct. Thus, it is not surprising that 
eq. (10) can be used to described accurately the P V T  
behavior of polymers. 
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Figure 3 
theoretical results. 

PVT behavior of PHMA. The solid line is the 
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Figure 4 
theoretical results. 

PVT behavior of BPE. The solid line is the 

Pressure and Temperature Superposition Behavior 
of Compressed Polymers 

Sanchez' studied the compression response of poly- 
mers, solvents, and polymer solutions to hydrostatic 
pressure. These results satisfied a corresponding 
state behavior. The response of polymers to pressure 
is universal, as found experimentally.' On the basis 
of on eqs. ( 9 )  and ( l o ) ,  the pressure and tempera- 
ture superposition of polymers can also be investi- 
gated. 

Following Sanchez's definition,' we have studied 
pressure and temperature superposition behavior for 
PMMA, BPE, and poly ( n -butyl methacrylate ) 
( PnBMA) , using a reduced pressure P / B  ( T,O) . The 
results at several temperatures are shown in Figures 
5 and 6. A comparison of theory with experimental 
results was also made for polydimethylsiloxane, as 
shown in Figure 7. The experimental data were ob- 
tained from the literature.' In this case, a reference 
pressure of zero was used. Note that all data for 

h 

PIS,( 102) 

0 10 20 30 

Figure 5 Theoretical reduced isothermal volume for 
PMMA vs. reduced pressure using a reference pressure of 
zero. 
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Figure 6 Theoretical reduced isothermal modulus for 
PMMA, BPE, and PnBMA vs. reduced pressure using a 
reference pressure of zero. 

different temperatures fall very precisely onto a sin- 
gle nonlinear curve. The theoretical bulk modulus 
clearly satisfies pressure-temperature superposition. 
This is not a surprise, because isothermal compres- 
sion is a function of PIB ( T,O) only.' These results, 
including the Sanchez results,8 provide future guid- 
ance for theoretical models that can describe pres- 
sure-temperature superposition behavior. The 
theoretical results show that the response of poly- 
mers to pressure is universal. 

Clearly, the change of volume with pressure and 
the pressure-temperature superposition of polymers 
can be described by eqs. (9) and ( l o ) ,  which were 
obtained on the basis of the idea of nonlinearity of 
the intermolecular force fields. It may also be used 
to help understand the nonlinear viscoelasticity of 
glassy polymers. 

Yield Stress Prediction for Glassy Polymers 

We next pose the question: can the model be used 
for the calculation of the yield stress, and for the 
study of the relationship between stress and strain 
for glassy polymers? 

Consider the ideal tensile test. Under multiaxi- 
ality of stress, the local load is represented by only 
three normal stresses, the so-called principal 
stresses, uxx, a,, and uzz. 

v -  1 3  

vo - 1 : .  

It can also be assumed that 

Now consider compression and tension processes. 
Under ideal state conditions, they are opposite tests. 
Thus, it is possible to define the relationship between 
pressure, P ,  and tensile stress, F ,  as follows. 

where E is the tensile modulus. 
According to eqs. ( 10) to ( 14), the relationship 

between stress, 6, and strain, e = I l l o ,  in the uniaxial 
tension test is given by: 

) / 14.94. (18) = E(&-6.48 - &-21.42 

Letting d u l d e  = 0, results in the following rela- 
tions 

cry (yield stress) = 0.028E 

ey(yield strain) = 111, = 1.08 

(19) 

(20) 

or 

( I  - l o ) / l o  = 0.08, (21) 

where 1, is the initial length of the specimen under 
zero tension, 1 the length under uniaxial tension. 
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Figure 7 Comparison of the theoretical value with ex- 
perimental results for polydimethlsiloxanes. The experi- 
mental data were obtained from the literature.' 
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Figure 8 Theoretical (dashed line) and experimental 
tensile modulus vs. tensile yield stress. The experimental 
data are from the literature.' 

Thus, a relationship can be obtained that can de- 
scribe the stress and strain yield behavior for glassy 
polymers. However, eq. (18) does no provide uni- 
versal relationship between stress and strain as such, 
as distinct from yield values. Obviously, E,, is the 
limiting yield strain or maximum yield strain for 
glassy polymers. 

Yield and tensile strengths for polymers are very 
comparable and usually fall in the range 10 - 80 
MPa.' The typical values of tensile moduli are 1 - 3 GPa.' We can estimate approximately the yield 
stress using eq. ( 19). The range of the yield stress 
for glassy polymers so estimated is from 28 to 84 
MPa. The values of yield stress for glassy polymers 
coincides with experimental results? 

Figure 8 is a comparison of theory with experi- 
mental yield strength data. These experimental data 
are from the literature,* which include both crys- 
talline and glassy polymers. 

As is known, the change of stress with strain de- 
pends on thermal history, strain rate, temperature, 
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Figure 10 Comparison of theoretical results with ex- 
perimental data for the polyethylene (PE). The experi- 
mental data are from the literature." 

and so on.' However, these effects of temperature 
and thermal history may be absorbed into the tensile 
modulus, E .  For many glassy polymers, the value of 
yield strain is lower than the cr value predicted by 
eq. (20) .'s4 In particular, many stress-strain curves 
from glassy polymers under uniaxial tension lag be- 
hind the curve predicted by eq. ( 18) (see Fig. 9 ) .  
However, some stress-strain curves from polymers 
under uniaxial tension can be described approxi- 
mately by eq. 18, but it is not universal. Two special 
examples of polymers in the crystalline state are 
polyethylene ( P E )  and poly (vinylidene fluoride) 
( PVFz) .lo,ll The comparisons of theory with exper- 
imental data are shown in Figures 10 and 11. The 
tensile modulus, E ,  used in eq. (18) was estimated 
based on the peak value of the experimental stress- 
strain curve shown in the literature for PE" and 
PVF2," respectively, and eq. (19). Especially at, or 
in the vicinity of, the yield point, the experimental 
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Figure 11 Comparison of theoretical values (dash line) 
with experimental results for poly(viny1idene fluoride) 
(PVFB). The experimental data are from the literature." 
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values can be well described by eq. ( 19). This implies 
that flow at or in the vicinity of the yield point is 
not simply an accelerated form of the creep at  very 
low strains. 

From the above results, it can be seen that the 
yield stress can be predicted by a model in which 
time, or any aging effect, is completely absent. For 
yield stress, the prediction was found to be quanti- 
tative, i.e., the relationship between yield stress and 
tensile modulus is universal for all glassy polymers. 

Why is the relationship between stress and strain 
not universal for glassy polymers? A molecular chain 
stretched by a force u < uy may break at some par- 
ticular time.The additional energy required for mo- 
lecular chain rupture is delivered by the random 
thermal  vibration^.^ Because of the effect of strain 
rate, at  each instant, the molecular chains reach the 
fracture condition only locally. A t  u 4 uy, some mo- 
lecular chains may reach the critical fracture con- 
dition. So, the yield strain value will be lower than 
the cy predicted by eq. (20) .  Thus, different stain 
rates may result in different stress-strain curves. 
So, eq. (20) serves only as an interesting observation 
as regards the yield strain for glassy polymers. It 
can not be utilized to predict cr reliably for any par- 
ticular glassy polymer of interest. 

At  uy, the activation energy is rather  OW,^,'^ and 
yielding can be described simply and accurately by 
eq. ( 19), and also ~niversal ly .~-~ 

CONCLUSIONS 

P V T  behavior, the pressure and temperature su- 
perposition behavior of compressed polymers, and 
a relationship between yield stress and tensile mod- 
ulus for glassy polymers can be derived on the basis 
of the nonlinear force field between the molecules. 

The maximum theoretical yield strain for glassy 
polymers has been found to be: 

cy = Z / Z o  = 1.08 (or ( 1  - Z o ) / Z o  = 0.08) 

The relationship between yield stress and tensile 
modulus is universal: 

a, = 0.028E. 

The theoretically predicted values of yield stress 
for glassy polymers (also including polymers in the 
crystalline state) are from 24 to 84 GPa. They co- 
incide with experimental data. 
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